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Why bother with an F Test? Testing a joint Null Hypothesis

e Sometimes you want to test a joint Null Hypothesis
(multiple hypotheses)... statistical significance?

« Examples:

Population effects in NFL tix prices: pop and pop?

Regional fixed effects in sovereign debt models:
region dummies/FEs

AppleMusic effects: AppleMusic dummy and trend

Gender differences in estimated wage equations:
ftenure and female

Uber tipping: all those FEs (fixed effects)... day, time,
pick-up and drop-off locations



Hypothesis Testing and t Tests: Review

Distribution Plot
T, df=

Bx_ﬁx

The t statistic, the Cornerstone of Inference:
se(B, )

MLR.1-6: the t statistic will have a t distribution with n—k -1 dofs.
Hypothesis Testing I: H,: 5, =0

- Test I: Critical value, ¢, defined by the significance level, &, and t, ,: P(t,_|>¢c)=¢

N

b

N

se(f3,)
Test II: p value, defined by the tstatand t,_, ,: p=P ([t |>|t stat])

Reject H, : B, =0 if |t stat| =

> ¢, If the t stat > the critical value, ¢

Reject H, : 5, =0 if p <«, if the p-value < the significance level, «

Tests | and Il are equivalent: Reject under Test I if and only if you reject under Test Il



t Tests: Testing single parameters/restrictions

Testing single parameter values:

e Critical value c defined by P(t,_,|>¢c)=«a

B -3 B

H,: B, =0: t= (B Se(é )
Reject if \t\_ sel(éﬂl) -
orif p= P(‘tn—k—l‘ S M) -y
Hyif =20 t= 2;(_813 _ Eex(;XZ) ~
Reject if |t = fe(ﬂlz) e

orif p=P(|t, | >[t]) <«

n-k-1

n-k-1

Testing single restrictions:

Impose the restriction and test for differences;
MLR.1: y =B, + B X+ B,2+U

Testing H, : g, = 5,
Impose the restriction: generate w= X+ 2

l: . Tegress y on w and x:

= Byt B Box=fy + (B, +B)x+ B2
.. test for differences I: H,: 5, =0

Il: ... or regress y on w and z:
g = ﬂo+ﬂW+ﬂZ—ﬂo+ﬂX+(ﬂ +B, )2
0 B, =0

= ... test for differences Il:



F Tests: Testing multiple parameters & linear restrictions

F tests: test linear restrictions on estimated parameters in SLR and MLR models.

Linear restrictions: Linear functions (of the parameters to be estimated) is/are set equal to
zero; you can have lots of restrictions (but not more than the number of parameters to be
estimated); examples below

Counting restrictions: The number of linear restrictions, q (why g? no idea!), will matter;
count restrictions by counting ='s signs (drop redundant restrictions)

Here are some examples:
g=1:a) B, =4,,andb) B+28,=0

q=2: a) f=0and §,=0,b) g =1land §,=2,andc) B, =f,, f, =p, and 3, = f3,
(one restriction in c) is redundant)



Running the F Test: Some intuition

Step 1: Start with the Null hypothesis that it’s A-OK to impose some linear restrictions on
the estimated coefficients in our model.

Step 2. Estimate the model with and without those restrictions... and focus on the SSRs and
how they change.

= Since we’ve imposed a restriction (or restrictions) on the estimated coefficients, the SSRs
will almost always increase: SSR, > SSR .

Step 3: OK, so SSRs increased. That's no surprise! But by how much? ... alot? ... or
maybe not so much?

= Big increase in SSRs: If SSRs increase by a lot (whatever that is) then the restrictions
severely impacted the performance of the model, and so we reject the Null Hypothesis
(which was that imposing the restrictions was A-OK). Reject, Reject Reject!

. . But if not so much, then maybe those restrictions weren’t so bad after all,
and we might fail to reject.... Which is to say that it really was to Impose those
restrictions after all!



The F Statistic: F = ASSRs /| “bAdofs

(SSRg —SSRz )/ ¢

SSR,. /(n—k-1) '

where g is the number of restrictions (e.g. the number of '='s), and n—k —1 is the number of
degrees of freedom in the unrestricted (UR) model.

e The F statistic is defined by: Fstat=F =

e By construction F >0, assuming that F is well defined (since SSR, > SSR ;).
The F statistic Is an elasticity! Who knew?
e The F statistic is really just an elasticity. We can rewrite the equation for F as:

(SSR; —SSRz )/ SSR 5 _ %ASSR
q/(n—k-1) % Adofs

[ ] F:

e 5o the F statistics tells you the %change in SSRs for a
given %change in degrees of freedom (you might call this bang per buck).



The F Statistic & Three Goodness of Fit Metrics

SSR; —SSRyz )/ SSRyr  %ASSR
q/(n-k-1) %Adofs

(k-1 (R —R:) AR*/(1-Ri;)
q (1-R%) ~ %Adofs

e SSR: F:(

e R°: F

(n—k —1) SSE,; —SSE;  ASSE / SSR
q SSR %Adofs

e SSE: F =




Running the F Test: More formally

The Null Hypothesis is that the restrictions are A-OK.

Pick a small significance level, o , say a =.05, the maximum
acceptable probability of a False Rejection.

Critical value: Find the critical value, c, such that
prob (F(q,n-k-1)>c)=a.

MLR.1-.6: The F statistic will have an F distribution with
parameters g and n-k-1. pvalue = 0.1241

p value: Generate the p value as the probability in the tail to the p! 503
right of the Fstat: p = prob (F(q,n—k —1) > Fstat)

Reject the Null Hypothesis if Fstat >c or p<«a ... and fail to
reject otherwise.
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Some F Distributions
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IT'S EASY!

Running F tests in Stata Is a snap

For example, to test the linear restrictions above, you would run the following Stata
commands just after estimating your OLS model (reg y X, X, X; ):

= pi=p5 test(x =X,)
p+2p,=0: test (x, +2x, =0)

p,=0and B, =0: test (x, =0)(x, =0) orjust test x, X, (‘=0"isassumed if no value
Is specified)
p,=1land g, =2: test (x, =1) (x,=2)

b =P, andﬂl = p, @ test (X1 = Xz) (X1 = Xs)

How to read the test syntax: Insert the true parameter for the variable in front of each
variable name. So, for example: test (x, = x,) reads as Test the Null Hypothesis that the
true parameter for the variable x, equals the true parameter for the variable x, .. or perhaps
more concisely, Test the Null ... the true parameter for x, equals the true parameter for x, .



Testing a Single Parameter: F =t?
Testing H,: B, =0
o ttest: Reject if ‘t[} ‘>c , where t, = P and prob (|t, 4| >¢) =« , or if
X R

p = prob (\tn_k_l\ > ‘t[} D < a (cis the critical value for the t test)

SSR, — SS
(SSR, Rir) and
SSR,; / dofs

prob (F(L, n—k—-1)>cc)=a, orif p=prob(F(,n—k-1) > Fstat) <« (cc is the critical
ﬁ value for the F test)
e These tests are identical since:

Fstat = tg (the F stat is the square of the t stat),

e [ test: Rejectif Fstat >cc, where Fstat =

cc = c¢* (the critical value for the F test is the square of the critical value for the t test)

prob(F (L, n—k —1) < x*) = prob(-x <t,_, , < x) forany x>0 (so you might say that
the F distribution is the square of the t distribution)



Testing a Single Parameter, cont'd: F = t2 example

Test Hy: B, =0 in the following SLR model:

Source | SS df MS Number of obs = 252
————————————— Fomm e F(3, 248) = 213.67
Model | 10872.5504 3 3624.18347 Prob > F = 0.0000
Residual | 4206.46623 248 16.9615574 R-squared = 0.7210
————————————— e —————- Adj R-squared = 0.7177 N
Total | 15079.0166 251 60.0757635 Root MSE = 4.1184 F(1,248) Distribution
Brozek | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ PP
wat | -.120415 .0222516 -5.41 0.000 -.1642411  -.0765888
abd | .879846 .0579164 15.19 0.000 . 7657751 -9939168
hgt | -.1181607 .0824192 -1.43 0.153 -.2804915 .0441701
cons | -32.66247 6.51936 -5.01 0.000 -45.50285 -19.8221
Run the F test: . . . : ;
0 1 2 3 4
. test hgt Ftail(1, 248,2 055) = 15296678
(1) hgt =0
FC 1, 248) = 2.06
Prob > F = 0.1529

Notice the equivalence of the F stat/test and the t stat/test: 1.43* =2.04 (rounding error) and
Prob>F =0.1529 =P >|t|=0.153 .



F =t2: Who knew? ... Well, You knew! = dofs ——

AR;
1 —R?

The Convergence of Goodness of Fit and Inference!

Recall those convergence results: In SLR and MLR models, a variable's t stat reflected it's
incremental contribution to R*:

2

- t2 =dofs ARXZ,
1—

5 where AR’ is a RHS variable's incremental contribution to R?.

If you consider the full model to be unrestricted, and the restricted model to restrict the x
coefficient to be zero (so effectively dropping x from the model), the F test statistic is:

(n—k—1) (R% —RZ) AR?

= dofs

u F = .
1 1-R%, 1-R?

: . - AR’
And since té = F (we are testing just one restriction) , we have t = dofs F: !

So the connection between t stats and incremental R*, which probably seemed to you to have
come out of nowhere, was in fact just an example of F stats in action.



Reported F Stat's in OLS Output
(the F stat for the regression)

. reg Brozek hgt wgt abd if _n < 8

Source | SS df MS Number of obs = 7 ) ]
————————— a—;—;—————————————————————————————————— , | ° F stat/test for the regression: Testing the null
Mode 322.483875 3 107.494625 Prob > F = - 5 . .
Residual | 25.8046962 3 8.6015654 R-squared = 0 o259 hypothesis that all of the (non-intercept) true parameter
————————————— +----——————-—---—-—---——- Adj R-squared = 0.8518 values are zero.
Total | 348.288571 6 58.0480952 Root MSE =  2.9328
______________________________________________________________________________ . Fo_ R* /k _dofs R®  dofs SSE
Brozek | Coef. Std. Err. t P>]t] [95% Conf. Interval] B |:]__ R2:|/(n_ k —]_) - k 1-R? - k SSR ’
_____________ e
hgt | -2.340897 1.249452  -1.87 0.158  -6.317211  1.635417 - > 2 _ p2
wgt |  .1964088  .2129627 0.92 0.424  -.4813334 .874151 since Ry =0 and Rj; =R".
abd | 1.050577  .3059068 3.43  0.041 077045  2.024109 o o
cons |  53.73654  71.80124 0.75 0.509  -174.7671  282.2401 e Used to assess the overall statistical significance of the

regression. In practice, the reported F stats are almost

_ test hgt wgt abd if n < 8 L di (3/3)*.9259/(1-.9259) | always quite sizable (in double, if not triple, digits).
12.495277 . ; -
E 3 C]vg: _ 8 e If your F stat is even close to single digits, you probably
B | in!
(3 abd =0 I have a crummy model! ... and should start again!

12.4971
’ Prob > F =  0.0335 ‘




Babies and Bathwater

e Be careful about throwing out the baby with the bath water... you don’t want to exclude a
significant explanatory variable from your model just because it happens to be associated
with a set of RHS variables that are jointly insignificant.

e Or put differently: F tests judge variables by the friends they keep!

e Example: The F test does not reject at the 10% level the Null Hypothesis that the inflation
and deficit_gdp parameters are zero... even though deficit_gdp is statistically significant at
almost the 5% level (and has p <0.05 when inflation is dropped from the model).

. reg NSRate corrupt gdp inflation deficit _gdp debt _gdp eurozone If _n < 30

Source | SS df MS Number of obs = 29
------------- e~ F(6, 22) = 12.99
Model | 88.8122105 6 14.8020351 Prob > F = 0.0000
Residual | 25.0657205 22 1.13935093 R-squared = 0.7799
————————————— Fo - AdjJ R-squared = 0.7199
Total | 113.877931 28 4.06706897 Root MSE =  1.0674
NSRate | Coef. Std. Err. t P>|t] [95% Conf. Interval] - test inflation deficit_gdp
_____________ U
corrupt | 644807  .1078044 5.98 0.000 .4212342 .8683797 ( 1) inflation = 0
gdp | .0002144  .0000765 2.80 0.010 0000557 0003731 ( 2) deficit gdp = 0
inflation | .0361479 .0846488 0.43 0.674 - .139403 _2116988
deficit gdp | -.0732749 035707 ___-2.05 _ 0.052 __ -.1473266 __.0007768 FC 2, 22 = 2.22
debt gdp | -.0220782  .0094606  -2.33 0.029  -.0416982 -.0024581 Prob > F = 0.1320
eurozone |  .9996265  .4721874 2.12 0.046 0203699  1.978883
_cons | 4.269966 1.226366 3.48 0.002 1.726638  6.813295



F Stats, Adjusted R-squared and t Stats

Adjusted R-square increases or decreases with changes in the RHS variables depending on
the associated F statistic. Start with the unrestricted model, UR, and move to the restricted
model, R... caused by dropping multiple variables from the UR model.

Q[l_lin}
(n—k-1)+q

The change in adjusted R-sq will be: AR? = R? —R%, = [1-F].

The sign of this expression will depend on whether the F statistic is greater or less than 1:
. Fstat<l=AR?=R2-R% >0=R?>R%,

« Fstat=1= AR’ =R’ -R}, =0= R: =R’ ,and

« Fstat >1=> AR’ =RZ -R}, <0= R <R%.

You've seen this before! Recall that for a single restriction, the F statistic is the square of
the t stat, and so, as you saw in MLR Assessment: R? increases when you drop a single
RHS variable having |t <1 , decreases if |t/ >1, and is unchanged if |t|=1.



Adding and Dropping RHS Variables: F stats and Adjusted R?

€Y

Brozek

(2

Brozek

3

Brozek

€Y

Brozek

hip

thigh

hgt

~0.151%**
(-5.21)

0.937***
(17.19)

~0.154
(-1.22)

0.277*
(2.43)

~41.80%**
(-6.45)

~0.129%**
(-3.68)

0.911***
(15.37)

~0.182
(-1.42)

0.255%
(2.21)

-0.0983
(-1.13)

~0.154%**
(-4.92)

0.940%**
(16.72)

~0.153
(-1.21)

0.277*
(2.42)

0.0477
(0.24)

—42 . 73***
(-5.65)

~0.132%**
(-3.56)

0.914%**
(15.01)

~0.181
(-1.41)

0.255*
(2.20)

-0.0982
(-1.12)

0.0459
(0.23)

~33.24**
(-2.93)

tstats and t tests:

e (2)to (1) (drop hgt): hgt |tstat| > 1, R? and adj R?
decrease, RMSE increases

e (3)to (1) (drop ankle): ankle [tstat| < 1, R?
decreases, adj R? increases, and RMSE decreases

F stats and F tests:

e (4)to (1) (drop hgt and ankle): Since adj R?
increases, the F test associated with dropping hgt
and ankle from (4) will have an Fstat<1 ...

Here are the F test results:

. reg Brozek wgt abd hip thigh hgt ankle
. test hgt ankle

(1) hgt=0
(2) ankle =0
FC 2, 245) = 0.66
Prob > F = 0.5180



reg NSRate

Source
Model
Residual

corrupt
Ingdp
inflation
deficit _gdp
debt _gdp
eurozone
_cons

It's a Wrap!

corrupt Ingdp inflation deficit gdp debt gdp eurozone

I SS df MS Number of obs = 108
F F(6, 101) = 104 .46
| 288.476069 6 48.0793449 Prob > F = 0.0000
| 46.4871714 101 .460269023 R-squared = 0.8612
Fom AdjJ R-squared = 0.8530
| 334.963241 107 3.13049758 Root MSE = .67843
| Coef. Std. Err. t P> t] [95% Conf. Interval]
e
| -5404159 .0369972 14.61  0.000 -4670235 .6138084
| .3366617 .0370923 9.08 0.000 .2630806 .4102428
[ -.043741 .017731 -2.47 0.015 -.0789145 -.0085674
| -.0504287 -0129655 -3.89 0.000 -.0761487 -.0247087
| -.0092895 .0022185 -4.19 0.000 -.0136904  -.0048885
| -5062781 .2020622 2.51 0.014 .1054411 -9071152
| 2.661791 .2395918 11.11  0.000 2 .186505 3.137077
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