More Testing: F Statistics & F Tests

- Why an F test?
- Hypothesis Testing and t Tests: *Review*
- t Tests: Testing single parameters/restrictions
- F Tests: Testing multiple parameters & linear restrictions
- Running the F Test: Some intuition
- The F Statistic: $F = \% \Delta SSRs / \% \Delta dofs$
- The F Statistic & three Goodness of Fit metrics
- Running the F Test: *More Formally*

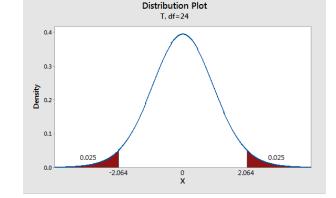
- Some F distributions
- Running F tests in Stata is a snap!
- Testing a single parameter: $F = t^2$
- ... An Example
- F = t²: Who knew? ... Well, You knew!
- Reported F Stat's in OLS output
- Babies and Bathwater
- F Stats, Adjusted R² and t Stats
- Adding and dropping RHS variables: F stats and Adjusted R²

Why bother with an F Test? Testing a joint Null Hypothesis

- Sometimes you want to test a joint Null Hypothesis (multiple hypotheses)... statistical significance?
- Examples:
 - Population effects in NFL tix prices: pop and pop²
 - Regional fixed effects in sovereign debt models: region dummies/FEs
 - AppleMusic effects: AppleMusic dummy and trend
 - Gender differences in estimated wage equations: ftenure and female
 - Uber tipping: all those FEs (fixed effects)... day, time, pick-up and drop-off locations

Hypothesis Testing and t Tests: Review

- The t statistic, the *Cornerstone of Inference*: $\frac{B_x \beta_x}{se(B_x)}$
- MLR.1-6: the t statistic will have a t distribution with n-k-1 dofs.
- Hypothesis Testing I: $H_0: \beta_x = 0$



Test I: Critical value, c, defined by the significance level, α , and t_{n-k-1} : $P(|t_{n-k-1}| > c) = c$

Reject
$$H_0: \beta_1 = 0$$
 if $|t| stat = \left| \frac{\hat{\beta}_1}{se(\hat{\beta}_1)} \right| > c$, if the t stat > the critical value, c

- Test II: p value, defined by the *t stat* and t_{n-k-1} : $p = P(|t_{n-k-1}| > |t| stat|)$ Reject $H_0: \beta_1 = 0$ if $p < \alpha$, if the p-value < the significance level, α
- Tests I and II are equivalent: Reject under Test I if and only if you reject under Test II

t Tests: Testing single parameters/restrictions

Testing single parameter values:

- Critical value c defined by $P(|t_{n-k-1}| > c) = \alpha$
- $H_0: \beta_x = 0: t = \frac{B_x \beta_x}{se(B_x)} = \frac{B_x}{se(B_x)} \sim t_{n-k-1}$
 - Reject if $|t| = \left| \frac{\hat{\beta}_1}{se(\hat{\beta}_1)} \right| > c$,

or if
$$p = P(|t_{n-k-1}| > |t|) < \alpha$$

- $H_0: \beta_x = 2: t = \frac{B_x \beta_x}{se(B_x)} = \frac{B_x 2}{se(B_x)} \sim t_{n-k-1}$
 - Reject if $|t| = \left| \frac{\hat{\beta}_1 2}{se(\hat{\beta}_1)} \right| > c$,

or if
$$p = P(|t_{n-k-1}| > |t|) < \alpha$$

Testing single restrictions:

- Impose the restriction and test for differences; MLR.1: $y = \beta_0 + \beta_x x + \beta_z z + U$
- Testing $H_0: \beta_x = \beta_z$
- Impose the restriction: generate w = x + z
- I: ... regress y on w and x: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_w w + \hat{\beta}_x x = \hat{\beta}_0 + (\hat{\beta}_w + \hat{\beta}_x) x + \hat{\beta}_w z$
 - ... test for differences I: $H_0: \beta_x = 0$
- II: ... or regress y on w and z: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_w w + \hat{\beta}_z z = \hat{\beta}_0 + \hat{\beta}_w x + (\hat{\beta}_w + \hat{\beta}_z) z$
 - ... test for differences II: $H_0: \beta_z = 0$

F Tests: Testing multiple parameters & linear restrictions

- F tests: test *linear restrictions* on estimated parameters in SLR and MLR models.
- Linear restrictions: Linear functions (of the parameters to be estimated) is/are set equal to zero; you can have lots of restrictions (but not more than the number of parameters to be estimated); examples below
- Counting restrictions: The number of linear restrictions, q (why q? no idea!), will matter; count restrictions by counting ='s signs (drop redundant restrictions)
- Here are some examples:
 - q = 1: a) $\beta_1 = \beta_2$, and b) $\beta_1 + 2\beta_2 = 0$
 - q = 2: a) $\beta_1 = 0$ and $\beta_2 = 0$, b) $\beta_1 = 1$ and $\beta_2 = 2$, and c) $\beta_1 = \beta_2$, $\beta_1 = \beta_3$ and $\beta_2 = \beta_3$ (one restriction in c) is redundant)

Running the F Test: Some intuition

- *Step 1*: Start with the Null hypothesis that it's A-OK to impose some linear restrictions on the estimated coefficients in our model.
- *Step 2*: Estimate the model with and without those restrictions... and focus on the SSRs and how they change.
 - Since we've imposed a restriction (or restrictions) on the estimated coefficients, the SSRs will almost always increase: $SSR_R \ge SSR_{UR}$.
- Step 3: OK, so SSRs increased. That's no surprise! But by how much? ... a lot? ... or maybe not so much?
 - **Big increase in SSRs:** If SSRs increase by a lot (whatever that is) then the restrictions severely impacted the performance of the model, and so we reject the Null Hypothesis (which was that imposing the restrictions was A-OK). **Reject, Reject Reject!**
 - *It's not so big*: But if not so much, then maybe those restrictions weren't so bad after all, and we might fail to reject.... Which is to say that it really was **A-OK** to impose those restrictions after all!

The F Statistic: $F = \% \Delta SSRs / \% \Delta dofs$

- The F statistic is defined by: $Fstat = F = \frac{\left(SSR_R SSR_{UR}\right)/q}{SSR_{UR}/(n-k-1)}$, where q is the number of restrictions (e.g. the number of '='s), and n-k-1 is the number of degrees of freedom in the unrestricted (UR) model.
- By construction $F \ge 0$, assuming that F is well defined (since $SSR_R \ge SSR_{UR}$).

The F statistic is an elasticity! Who knew?

• The F statistic is really just an elasticity. We can rewrite the equation for F as:

•
$$F = \frac{\left(SSR_R - SSR_{UR}\right) / SSR_{UR}}{q / (n - k - 1)} = \frac{\% \Delta SSR}{\% \Delta dofs}$$

• So the F statistics tells you the %change in SSRs for a given %change in degrees of freedom (you might call this *bang per buck*).

The F Statistic & Three Goodness of Fit Metrics

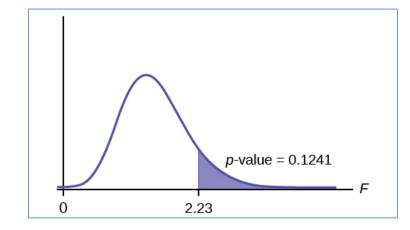
•
$$SSR: F = \frac{\left(SSR_R - SSR_{UR}\right) / SSR_{UR}}{q / (n - k - 1)} = \frac{\% \Delta SSR}{\% \Delta dofs}$$

•
$$R^2$$
: $F = \frac{(n-k-1)}{q} \frac{\left(R_{UR}^2 - R_R^2\right)}{\left(1 - R_{UR}^2\right)} = \frac{\Delta R^2 / \left(1 - R_{UR}^2\right)}{\% \Delta dofs}$

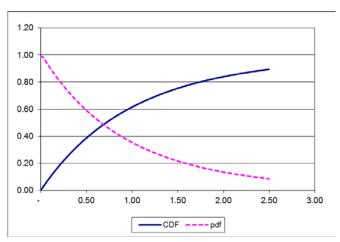
• SSE:
$$F = \frac{(n-k-1)}{q} \frac{SSE_{UR} - SSE_{R}}{SSR_{UR}} = \frac{\Delta SSE / SSR_{UR}}{\% \Delta dofs}$$

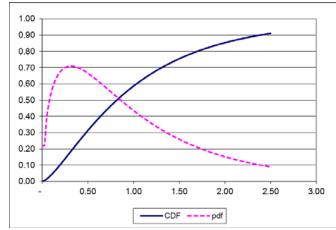
Running the F Test: *More formally*

- The Null Hypothesis is that the restrictions are A-OK.
- Pick a small significance level, α , say $\alpha = .05$, the maximum acceptable probability of a False Rejection.
- Critical value: Find the critical value, c, such that $prob(F(q, n-k-1) > c) = \alpha$.
 - MLR.1-.6: The F statistic will have an F distribution with parameters q and n-k-1.
- p value: Generate the p value as the probability in the tail to the right of the Fstat: p = prob(F(q, n k 1) > Fstat)
- Reject the Null Hypothesis if Fstat > c or $p < \alpha ...$ and fail to reject otherwise.

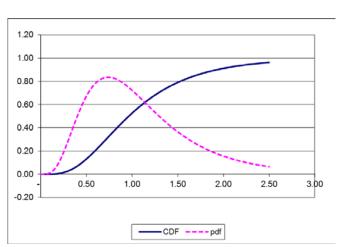


Some F Distributions

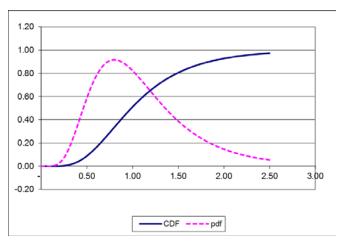




F(2,20) Distribution



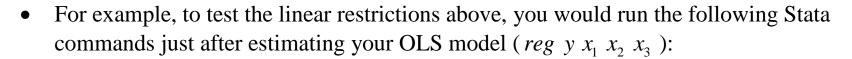
F(3,20) Distribution

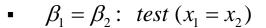


F(10,20) Distribution

F(15,20) Distribution

Running F tests in Stata is a snap





$$\beta_1 + 2\beta_2 = 0$$
: test $(x_1 + 2x_2 = 0)$

• $\beta_1 = 0$ and $\beta_2 = 0$: test $(x_1 = 0)$ $(x_2 = 0)$ or just test $x_1 x_2$ ('=0' is assumed if no value is specified)

•
$$\beta_1 = 1$$
 and $\beta_2 = 2$: test $(x_1 = 1)$ $(x_2 = 2)$

•
$$\beta_1 = \beta_2 \text{ and } \beta_1 = \beta_3 : \text{ test } (x_1 = x_2) (x_1 = x_3)$$

• How to read the *test* syntax: Insert *the true parameter for the variable* in front of each variable name. So, for example: $test(x_1 = x_2)$ reads as *Test the Null Hypothesis that the true parameter for the variable* x_1 *equals the true parameter for the variable* x_2 .. or perhaps more concisely, *Test the Null* ... *the true parameter for* x_1 *equals the true parameter for* x_2 .

Testing a Single Parameter: $F = t^2$

Testing $H_0: \beta_x = 0$

- **t test**: Reject if $\left|t_{\hat{\beta}_x}\right| > c$, where $t_{\hat{\beta}_x} = \frac{\hat{\beta}_x}{se_{\hat{\beta}_x}}$ and $prob\left(\left|t_{n-k-1}\right| > c\right) = \alpha$, or if $p = prob\left(\left|t_{n-k-1}\right| > \left|t_{\hat{\beta}_x}\right|\right) < \alpha$ (c is the critical value for the t test)
- **F test**: Reject if Fstat > cc, where $Fstat = \frac{\left(SSR_R SSR_{UR}\right)}{SSR_{UR} / dofs}$ and $prob\left(F(1, n-k-1) > cc\right) = \alpha$, or if $p = prob\left(F(1, n-k-1) > Fstat\right) < \alpha$ (cc is the critical value for the F test)
- These tests are identical since:
 - $Fstat = t_{\hat{\beta}_x}^2$ (the F stat is the square of the t stat),
 - $cc = c^2$ (the critical value for the F test is the square of the critical value for the t test)
 - $prob(F(1, n-k-1) < x^2) = prob(-x < t_{n-k-1} < x)$ for any x > 0 (so you might say that the F distribution is the square of the t distribution)

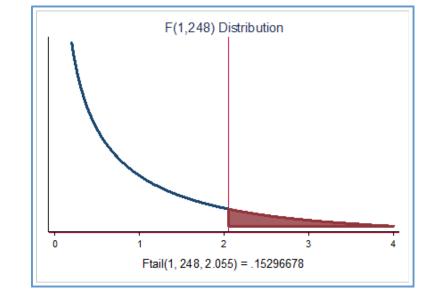
Testing a Single Parameter, cont'd: $F = t^2$ example

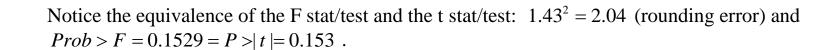
Test H_0 : $eta_{hgt} = 0$ in the following SLR model:

Source	SS	df	MS	Number of obs	=	252
+				F(3, 248)	=	213.67
Model	10872.5504	3	3624.18347	Prob > F	=	0.0000
Residual	4206.46623	248	16.9615574	R-squared	=	0.7210
+				Adj R-squared	=	0.7177
Total	15079.0166	251	60.0757635	Root MSE	=	4.1184

Brozek	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wgt	120415	.0222516	-5.41	0.000	1642411	0765888
abd	.879846	.0579164	15.19	0.000	.7657751	.9939168
hgt	1181607	.0824192	-1.43	0.153	2804915	.0441701
_cons	-32.66247	6.51936	-5.01	0.000	-45.50285	-19.8221

Run the F test:





$$F = t^2$$
: Who knew? ... Well, You knew! $t_x^2 = dofs \frac{\Delta R_x^2}{1 - R^2}$

$$t_{x}^{2} = dofs \frac{\Delta R_{x}^{2}}{1 - R^{2}}$$

The Convergence of Goodness of Fit and Inference!

- Recall those convergence results: In SLR and MLR models, a variable's t stat reflected it's incremental contribution to R^2 :
 - $t_{\hat{\beta}_x}^2 = dofs \frac{\Delta R_x^2}{1 D^2}$, where ΔR_x^2 is a RHS variable's incremental contribution to R^2 .
- If you consider the full model to be unrestricted, and the restricted model to restrict the x coefficient to be zero (so effectively dropping x from the model), the F test statistic is:

•
$$F = \frac{(n-k-1)}{1} \frac{\left(R_{UR}^2 - R_R^2\right)}{1 - R_{UR}^2} = dofs \frac{\Delta R_x^2}{1 - R^2}.$$

- And since $t_{\hat{\beta}_x}^2 = F$ (we are testing just one restriction), we have $t_{\hat{\beta}_x}^2 = dofs \frac{\Delta R_x^2}{1 R^2}$!
- So the connection between t stats and incremental R^2 , which probably seemed to you to have come out of nowhere, was in fact just an example of F stats in action.

Reported F Stat's in OLS Output (the *F stat for the regression*)

. reg Brozek hgt wgt abd if _n < 8</pre>

Source	ss	df	MS	Number of obs	=	7
	+			F(3, 3)	=	12.50
Model	322.483875	3	107.494625	Prob > F	=	0.0335
Residual	25.8046962	3	8.6015654	R-squared	=	0.9259
	+			Adj R-squared	=	0.8518
Total	348.288571	6	58.0480952	Root MSE	=	2.9328

Brozek	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
hgt	-2.340897	1.249452	-1.87	0.158	-6.317211	1.635417
wgt	.1964088	.2129627	0.92	0.424	4813334	.874151
abd	1.050577	.3059068	3.43	0.041	.077045	2.024109
_cons	53.73654	71.80124	0.75	0.509	-174.7671	282.2401

- . test hgt wgt abd if $_n < 8$
- (1) hgt = (
- (2) wgt = (
- (3) abd = 0

$$F(3, 3) = 12.50$$

 $Prob > F = 0.0335$

• F stat/test for the regression: Testing the null hypothesis that all of the (non-intercept) true parameter values are zero.

•
$$F = \frac{R^2 / k}{\left[1 - R^2\right] / (n - k - 1)} = \frac{dofs}{k} \frac{R^2}{1 - R^2} = \frac{dofs}{k} \frac{SSE}{SSR}$$
,
since $R_R^2 = 0$ and $R_{UR}^2 = R^2$.

- Used to assess the overall statistical significance of the regression. In practice, the reported F stats are almost always quite sizable (in double, if not triple, digits).
- If your F stat is even close to single digits, you probably have a *crummy* model! ... and should start again!

Babies and Bathwater

- Be careful about th*rowing out the baby with the bath water...* you don't want to exclude a significant explanatory variable from your model just because it happens to be associated with a set of RHS variables that are jointly insignificant.
- Or put differently: *F tests judge variables by the friends they keep!*
- **Example**: The F test does not reject at the 10% level the Null Hypothesis that the *inflation* and $deficit_gdp$ parameters are zero... even though $deficit_gdp$ is statistically significant at almost the 5% level (and has p < 0.05 when *inflation* is dropped from the model).
 - . reg NSRate corrupt gdp inflation deficit_gdp debt_gdp eurozone if _n < 30

Source		đ£	MS	Number of obs	=	29
+				F(6, 22)	=	12.99
Model	88.8122105	6	14.8020351	Prob > F	=	0.0000
Residual	25.0657205	22	1.13935093	R-squared	=	0.7799
+				Adj R-squared	=	0.7199
Total	113.877931	28	4.06706897	Root MSE	=	1.0674

NSRate	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
corrupt	.644807	.1078044	5.98	0.000	.4212342	.8683797
gdp	.0002144	.0000765	2.80	0.010	.0000557	.0003731
inflation	.0361479	.0846488	0.43	0.674	139403	.2116988
deficit_gdp	0732749	.035707	-2.05	0.052	1473266	.0007768
debt_gdp	0220782	.0094606	-2.33	0.029	0416982	0024581
eurozone	.9996265	.4721874	2.12	0.046	.0203699	1.978883
_cons	4.269966	1.226366	3.48	0.002	1.726638	6.813295
_cons	4.269966	1.226366 	3.48	0.002	1.726638	6.813295

- . test inflation deficit_gdp
 - (1) inflation = 0
 - (2) deficit_gdp = 0

$$F(2, 22) = 2.22$$

 $Prob > F = 0.1320$

F Stats, Adjusted R-squared and t Stats

- Adjusted R-square increases or decreases with changes in the RHS variables depending on the associated F statistic. Start with the unrestricted model, UR, and move to the restricted model, R... caused by dropping multiple variables from the UR model.
- The change in adjusted R-sq will be: $\Delta \overline{R}^2 = \overline{R}_R^2 \overline{R}_{UR}^2 = \frac{q \left[1 \overline{R}_{UR}^2 \right]}{(n k 1) + q} [1 F].$
- The sign of this expression will depend on whether the F statistic is greater or less than 1:

•
$$Fstat < 1 \Rightarrow \Delta \overline{R}^2 = \overline{R}_R^2 - \overline{R}_{UR}^2 > 0 \Rightarrow \overline{R}_R^2 > \overline{R}_{UR}^2$$
,

•
$$Fstat = 1 \Rightarrow \Delta \overline{R}^2 = \overline{R}_R^2 - \overline{R}_{UR}^2 = 0 \Rightarrow \overline{R}_R^2 = \overline{R}_{UR}^2$$
, and

•
$$Fstat > 1 \Rightarrow \Delta \overline{R}^2 = \overline{R}_R^2 - \overline{R}_{UR}^2 < 0 \Rightarrow \overline{R}_R^2 < \overline{R}_{UR}^2$$

• You've seen this before! Recall that for a single restriction, the F statistic is the square of the t stat, and so, as you saw in MLR Assessment: \overline{R}^2 increases when you drop a single RHS variable having |t| < 1, decreases if |t| > 1, and is unchanged if |t| = 1.

Adding and Dropping RHS Variables: F stats and Adjusted R²

	(1) Brozek	(2) Brozek	(3) Brozek	(4) Brozek
wgt	-0.151*** (-5.21)		-0.154*** (-4.92)	
abd			0.940*** (16.72)	
hip			-0.153 (-1.21)	
thigh		0.255* (2.21)		0.255* (2.20)
hgt		-0.0983 (-1.13)		-0.0982 (-1.12)
ankle			0.0477 (0.24)	0.0459 (0.23)
_cons			-42.73*** (-5.65)	
N	252	252	252	252
R-sq	0.7253	0.7267	0.7254	0.7268
adj. R-sq	0.7208	0.7212	0.7198	0.7201
rmse	4.095	4.093	4.103	4.101

tstats and t tests:

- (2) to (1) (drop hgt): hgt |tstat| > 1, R^2 and adj R^2 decrease, RMSE increases
- (3) to (1) (drop *ankle*): *ankle* |tstat| < 1, R² decreases, adj R² increases, and RMSE decreases

F stats and F tests:

• (4) to (1) (drop *hgt* and *ankle*): Since adj R² increases, the F test associated with dropping *hgt* and *ankle* from (4) will have an Fstat<1 ...

Here are the F test results:

- . reg Brozek wgt abd hip thigh hgt ankle
- . test hgt ankle
- (1) hgt = 0
- (2) ankle = 0

$$F(2, 245) = 0.66$$

 $Prob > F = 0.5180$

It's a Wrap!

That's all Folks!

. reg NSRate corrupt lngdp inflation deficit_gdp debt_gdp eurozone

Source	SS	df	MS	Number of obs	=	108
				F(6, 101)	=	104.46
Model	288.476069	6	48.0793449	Prob > F	=	0.0000
Residual	46.4871714	101	.460269023	R-squared	=	0.8612
				Adj R-squared	=	0.8530
Total	334.963241	107	3.13049758	Root MSE	=	.67843

NSRate	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
corrupt	.5404159	.0369972	14.61	0.000	.4670235	.6138084
lngdp	.3366617	.0370923	9.08	0.000	.2630806	.4102428
inflation	043741	.017731	-2.47	0.015	0789145	0085674
deficit_gdp	0504287	.0129655	-3.89	0.000	0761487	0247087
debt_gdp	0092895	.0022185	-4.19	0.000	0136904	0048885
eurozone	.5062781	.2020622	2.51	0.014	.1054411	.9071152
_cons	2.661791	.2395918	11.11	0.000	2.186505	3.137077

